Все проекты English Написать директору Вебинары
Импортозамещение Личный кабинет
Выбор региона
Выберите регион
Поиск

Как нейросети спасут вашу логистику

Время чтения:~5мин.

Этой весной словосочетание «цепочки поставок» запестрело в заголовках новостей. Из-за политических событий и санкций с проблемами в логистике столкнулось множество компаний – кто-то потерял важных поставщиков, кто-то просто не мог доставить товар через границу по старому пути. В итоге – рост цен, дефицит товаров, опустевшие полки магазинов.

В этой статье мы разберемся, каким компаниям стоит задуматься об оптимизации цепочек поставок, почему нейросети справляются с этой задачей лучше любого человека, и причем здесь «Первый Бит».

Почему важно оптимизировать цепочки поставок

Перебои в поставках могут грозить производителю гораздо большими убытками, чем кажется на первый взгляд. Очень важно сохранять свое присутствие на рынке и обеспечивать ритейлерам приемлемый service level, или уровень обслуживания. В основном он определяется процентом заказов, доставленных в срок.

Для поставщиков товаров повседневного спроса (FMCG) и представителей B2C-отраслей, ориентированных на потребителей, острой проблемой является представленность в магазинах. Ее нужно поддерживать постоянно.

Если вы пропадете из магазинов на неделю, то потеряете не только потенциальную прибыль от непроданных на этой неделе товаров, но и постоянных клиентов, которые могут успеть пристраститься к продукции конкурента. Соответственно, чем дольше вас нет на полке, тем больше убытки. Также не стоит забывать и об отношениях с ритейлом – если вашего товара часто нет в наличии, то магазины могут пересмотреть контракты и отдать ваше место на полках товарам других брендов.

Максимальный service level при минимальных затратах – продукт грамотно выстроенной цепочки поставок. В стабильное время многие компании даже не подозревают, как много денег они теряют, используя неоптимальные логистические цепочки. Увидеть все изъяны и найти наиболее выигрышные варианты – задача долгая и нетривиальная.

Искусственный интеллект, оптимизирующий цепочки поставок, может помочь и «тяжелому» B2B-бизнесу с небольшим количеством клиентов – компаниям, которые сбывают произведенный или добытый продукт другим производственным предприятиям или зарубеж. Для них софт подбирает самые выгодные схемы снабжения и производства, позволяя удерживать запасы с учетом современных рисков, следить за сроками обеспечения, быстро реагировать на изменения тарифов и доступность различных видов транспорта.


Симуляция и моделирование на службе у бизнеса

Комплексный планировочный продукт «Логистический решатель» – решение офиса NFP, в 2021 году присоединившегося к «Первому Биту». Он состоит из двух систем: программы для оптимизации цепей поставок anyLogistix и среды имитационного моделирования Anylogic. Вместе они позволяют проанализировать все элементы логистических цепей (от закупки материалов до доставки в конечные торговые точки) и найти лучшие возможные решения.

Объединенная система позволяет рассмотреть все возможные факторы и ответить на любые связанные с логистикой вопросы.

Где открывать новые склады? Как перераспределить потоки между уже имеющимися? Какой из распределительных центров будет выгоднее закрыть? Что будет, если появятся новые продукты? Перестраивать ли потоки в зависимости от сезона? Выгодно ли производить определенный продукт на конкретном заводе, или лучше перенести производство в другое место? Строить собственный склад или арендовать? Откуда доставлять товары в Челябинск? Куда перераспределить нагрузку, если производственные мощности завода исчерпаются? Какой запас хранить на собственных складах? Как часто снабжать крупную торговую сеть?

В условиях кризиса весны 2022 и многочисленных санкционных ограничений на первый план выходят новые проблемы другого характера. С каким поставщиком заключить контракт? Как перестроить цепочку, чтобы логистические издержки не увеличились в разы? Что будет, если спрос продолжит падать? Что делать, если нужного вам товара временно не окажется у партнера?

Список подобных насущных вопросов можно продолжать и продолжать, и каждый месяц к ним присоединяются все новые неожиданные нужды. Анализ постоянно меняющейся ситуации, конечно, в теории можно сделать самостоятельно, но именно системы, подобные «решателю», позволяют быстро и надежно просчитать последствия того или иного выбора.


Как работает Логистический решатель

Достигается это благодаря созданию подробной виртуальной модели всей схемы поставок и сбыта, включающей собственные объекты, объекты действующих и потенциальных партнеров. Виртуальная модель строится максимально подробно и поддерживает детализацию вплоть до конкретного товара или транспортного рейса. В нее вносится самая разная информация – вместимость складов, производственные ограничения, тарифы, целевые показатели, спрос.

Полная модель создается только после глубокого тестирования прототипа на ограниченных данных и гипотетических ситуациях. Для ускорения тестирования часть сценариев создается автоматически на основе библиотеки шаблонов специальными скриптами на Python. Эти же скрипты проверяют качество исходных данных и связность списков.

Протестированную систему масштабируют, постепенно внося в нее все имеющиеся данные. Когда все готово, вступают в дело алгоритмы математической оптимизации – они прорабатывают сотни тысяч вариантов дальнейшего развития событий и выбирают из них наиболее выигрышные. Благодаря этому можно быстро принимать управленческие решения любой сложности день в день.

Как уже было сказано выше, система моделирования цепи поставок может быть полезна любым компаниям с разветвленной схемой сбыта, даже в стабильное время. Поэтому, если текущие специфические проблемы обошли ваш бизнес стороной, верные решения по оптимизации логистики все равно помогут пересмотреть приоритеты и обнаружить невидимые ранее возможности для снижения затрат. Без специализированного ПО раскрыть этот потенциал попросту невозможно.


Крупнейший производитель напитков уже в деле

Среди недавних крупных проектов нашего офиса NFP было внедрение anyLogistix в российское отделение одного из мировых лидеров рынка напитков. Ему принадлежат десятки брендов и сотни продуктов, а российские заводы работают по всей стране.

При построении модели в нее пришлось внести информацию о порядка 200 000 клиентов. Для удобства аналитики и планирования их разделили на кластеры. Для этого использовался метод «гравитационного анализа».

Проект помог производителю с выбором стратегий производства и снабжения, способов доставки в розничные сети, нового варианта push-pull стратегии и многого другого. Так как сеть складов было решено переделать, симуляционные возможности ПО позволили путем многочисленных экспериментов предугадать риски и доказать эффективность принимаемых изменений.

По результатам внедрения прямые затраты на работу с клиентами снизились на 2-7%. Помимо этого, компания выиграла за счет изменения структуры автопарка и улучшенного распределения потоков. Были предотвращены инвестиции в потенциально убыточные стройки и расширения, суммарно на несколько миллиардов рублей.

В компании остались довольны этим проектом, поэтому полученный опыт планируют применить и в других странах.

Внедрение логистического решателя за 2 месяца

Решение, разработанное Первым Битом, позволит быстро проверять возможные гипотезы, связанные с логистикой, и принимать верные решения буквально за пару часов. Модель «Логистического решателя» можно развернуть всего за 2-3 месяца.

Хотите получать подобные статьи по четвергам?
Быть в курсе изменений в законодательстве?
Подпишитесь на рассылку

Нет времени читать? Пришлем вам на почту!

Заказать помощь специалиста 1С

Поможем перейти на российское ПО. 

Принимаем заявки 24/7 

Заказать звонок